/******************************************************************************/ /* SlunkCrypt, by LoRd_MuldeR */ /* This work has been released under the CC0 1.0 Universal license! */ /******************************************************************************/ /* Internal */ #include "../include/slunkcrypt.h" #include "version.h" /* CRT */ #include #include #include /* Intel(R) oneAPI DPC++/C++ Compiler */ #if defined(__INTEL_LLVM_COMPILER) && (!defined(__GNUC__)) # define __GNUC__ 9 #endif /* Compiler compatibility */ #if defined(_MSC_VER) && (!defined(__GNUC__)) # define FORCE_INLINE __forceinline # define UNUSED __pragma(warning(suppress: 4189)) #elif defined(__GNUC__) # define FORCE_INLINE __attribute__((always_inline)) inline # define UNUSED __attribute__((unused)) #else # define FORCE_INLINE inline # define UNUSED #endif /* Version info */ const uint16_t SLUNKCRYPT_VERSION_MAJOR = LIB_VERSION_MAJOR; const uint16_t SLUNKCRYPT_VERSION_MINOR = LIB_VERSION_MINOR; const uint16_t SLUNKCRYPT_VERSION_PATCH = LIB_VERSION_PATCH; const char *const SLUNKCRYPT_BUILD = __DATE__ ", " __TIME__; /* Utilities */ #define BOOLIFY(X) (!!(X)) // ========================================================================== // Data structures // ========================================================================== typedef struct { uint64_t hi, lo; } uint128_t; typedef struct { uint32_t x, y, z, w, v, d; } rand_state_t; typedef struct { int reverse_mode; uint8_t wheel[256U][256U]; uint32_t counter; rand_state_t random; } crypt_state_t; // ========================================================================== // Abort flag // ========================================================================== volatile int g_slunkcrypt_abort_flag = 0; #define CHECK_ABORTED() do \ { \ if (g_slunkcrypt_abort_flag) \ { \ goto aborted; \ } \ } \ while (0) // ========================================================================== // Byte access (endianness agnostic) // ========================================================================== static FORCE_INLINE uint32_t lower_u64(const uint64_t value) { return (uint32_t)(value & 0xFFFFFFFF); } static FORCE_INLINE uint32_t upper_u64(const uint64_t value) { return (uint32_t)(value >> 32U); } static FORCE_INLINE uint8_t byte_u64(const uint64_t value, const size_t off) { assert(off < sizeof(uint64_t)); return (uint8_t)((value >> (CHAR_BIT * off)) & 0xFF); } // ========================================================================== // 128-Bit math support // ========================================================================== #define READ_U128(X) ((((__uint128_t)(X).hi) << 64U) | ((__uint128_t)(X).lo)) static FORCE_INLINE void multiply_u128(uint128_t *const out, const uint128_t lhs, const uint128_t rhs) { #if defined(__GNUC__) && defined(__SIZEOF_INT128__) const __uint128_t tmp = READ_U128(lhs) * READ_U128(rhs); out->hi = (uint64_t)(tmp >> 64U); out->lo = (uint64_t)(tmp & 0xFFFFFFFFFFFFFFFF); #else const uint64_t lolo = (lhs.lo & 0xFFFFFFFF) * (rhs.lo & 0xFFFFFFFF); const uint64_t hilo = (lhs.lo >> 32U) * (rhs.lo & 0xFFFFFFFF); const uint64_t lohi = (lhs.lo & 0xFFFFFFFF) * (rhs.lo >> 32U); const uint64_t hihi = (lhs.lo >> 32U) * (rhs.lo >> 32U); const uint64_t crss = (lolo >> 32U) + (hilo & 0xFFFFFFFF) + lohi; out->hi = (hilo >> 32U) + (crss >> 32) + hihi; out->lo = (crss << 32U) | (lolo & 0xFFFFFFFF); out->hi += (lhs.hi * rhs.lo) + (lhs.lo * rhs.hi); /* 128x128=128 */ #endif } // ========================================================================== // Hash function // ========================================================================== static const uint128_t HASH_OFFSET_BASE = { 0x6C62272E07BB0142, 0x62B821756295C58D }; static const uint128_t HASH_MAGIC_PRIME = { 0x0000000001000000, 0x000000000000013B }; static FORCE_INLINE void hash_update_str(uint128_t *const hash, const uint8_t *const data, const size_t data_len) { size_t i; for (i = 0U; i < data_len; ++i) { hash->lo ^= data[i]; multiply_u128(hash, *hash, HASH_MAGIC_PRIME); } } static FORCE_INLINE void hash_update_u64(uint128_t *const hash, const uint64_t value) { size_t i; for (i = 0U; i < sizeof(uint64_t); ++i) { hash->lo ^= byte_u64(value, i); multiply_u128(hash, *hash, HASH_MAGIC_PRIME); } } static uint64_t hash_code(const uint64_t salt, const uint8_t *const data, const size_t data_len) { uint128_t hash = HASH_OFFSET_BASE; hash_update_u64(&hash, salt); hash_update_str(&hash, data, data_len); return hash.hi ^ hash.lo; } // ========================================================================== // Key derivation // ========================================================================== static FORCE_INLINE uint64_t keygen_loop(uint64_t salt, const uint8_t *const passwd, const size_t passwd_len) { uint64_t result = 0U; size_t u; for (u = 0U; u < 99971U; ++u) { result ^= salt = hash_code(salt, passwd, passwd_len); } return result; } static void generate_key(uint64_t *const key, const uint64_t salt, const uint16_t pepper, const uint8_t *const passwd, const size_t passwd_len) { key[0U] = keygen_loop(0x162603FA1CDA99D3 + salt + pepper, passwd, passwd_len); key[1U] = keygen_loop(0xBFDEC4A6C1A46E09 + salt + pepper, passwd, passwd_len); key[2U] = keygen_loop(0x6BA17D11624973EE + salt + pepper, passwd, passwd_len); } // ========================================================================== // Deterministic random bit generator // ========================================================================== static void random_init(rand_state_t *const state, const uint64_t *const key) { slunkcrypt_bzero(state, sizeof(rand_state_t)); state->x = lower_u64(key[0U]); state->y = upper_u64(key[0U]); state->z = lower_u64(key[1U]); state->w = upper_u64(key[1U]); state->v = lower_u64(key[2U]); state->d = upper_u64(key[2U]); } static uint32_t random_next(rand_state_t *const state) { const uint32_t t = state->x ^ (state->x >> 2); state->x = state->y; state->y = state->z; state->z = state->w; state->w = state->v; state->v ^= (state->v << 4) ^ t ^ (t << 1); return (state->d += 0x000587C5) + state->v; } static void random_seed(rand_state_t *const state, uint64_t salt, const uint16_t pepper, const uint8_t *const passwd, const size_t passwd_len) { size_t i; uint64_t key[3U]; do { generate_key(key, salt++, pepper, passwd, passwd_len); random_init(state, key); slunkcrypt_bzero(&key, 3U * sizeof(uint64_t)); } while (!(state->x || state->y || state->z || state->w || state->v)); for (i = 0U; i < 97U; ++i) { UNUSED volatile uint32_t q = random_next(state); } } // ========================================================================== // Initialization // ========================================================================== static int initialize_state(crypt_state_t *const state, const uint64_t nonce, const uint8_t *const passwd, const size_t passwd_len, const int mode) { uint8_t temp[256U][256U]; size_t r, i; const int reverse = BOOLIFY(mode); /* initialize state */ slunkcrypt_bzero(state, sizeof(crypt_state_t)); state->reverse_mode = reverse; /* initialize counter */ random_seed(&state->random, nonce, (uint16_t)(-1), passwd, passwd_len); state->counter = random_next(&state->random); /* set up the wheel permutations */ for (r = 0U; r < 256U; ++r) { random_seed(&state->random, nonce, (uint16_t)r, passwd, passwd_len); for (i = 0U; i < 256U; ++i) { const size_t j = random_next(&state->random) % (i + 1U); if (j != i) { state->wheel[r][i] = state->wheel[r][j]; } state->wheel[r][j] = (uint8_t)i; } CHECK_ABORTED(); } /* reverse the wheels, if requested */ if (reverse) { for (r = 0U; r < 256U; ++r) { for (i = 0U; i < 256U; ++i) { temp[r][state->wheel[r][i]] = (uint8_t)i; } } for (r = 0U; r < 256U; ++r) { memcpy(state->wheel[255U - r], temp[r], 256U); } slunkcrypt_bzero(temp, sizeof(temp)); CHECK_ABORTED(); } random_seed(&state->random, nonce, 256U, passwd, passwd_len); return SLUNKCRYPT_SUCCESS; /* aborted */ aborted: slunkcrypt_bzero(state, sizeof(crypt_state_t)); return SLUNKCRYPT_ABORTED; } // ========================================================================== // Encrypt / Decrypt // ========================================================================== static FORCE_INLINE void update_offset(uint8_t *const offset, uint32_t seed, rand_state_t *const state, const int reverse) { size_t i; for (i = 0U; i < 256U; ++i, seed >>= CHAR_BIT) { if (i && (!(i & 3U))) { seed = random_next(state); } offset[reverse ? (255U - i) : i] = (uint8_t)seed; } } static FORCE_INLINE uint8_t process_next_symbol(crypt_state_t *const state, uint8_t value) { uint8_t offset[256U]; size_t i; update_offset(offset, state->counter++, &state->random, state->reverse_mode); for (i = 0U; i < 256U; ++i) { value = (state->wheel[i][(value + offset[i]) & 0xFF] - offset[i]) & 0xFF; } return value; } // ========================================================================== // Public API // ========================================================================== int slunkcrypt_generate_nonce(uint64_t *const nonce) { if (!nonce) { return SLUNKCRYPT_FAILURE; } do { if (slunkcrypt_random_bytes((uint8_t*)nonce, sizeof(uint64_t)) != sizeof(uint64_t)) { return SLUNKCRYPT_FAILURE; } } while (!(*nonce)); return SLUNKCRYPT_SUCCESS; } slunkcrypt_t slunkcrypt_alloc(const uint64_t nonce, const uint8_t *const passwd, const size_t passwd_len, const int mode) { crypt_state_t* state = NULL; if ((!passwd) || (passwd_len < SLUNKCRYPT_PWDLEN_MIN) || (passwd_len > SLUNKCRYPT_PWDLEN_MAX) || (mode < SLUNKCRYPT_ENCRYPT) || (mode > SLUNKCRYPT_DECRYPT)) { return SLUNKCRYPT_NULL; } if (!(state = (crypt_state_t*)malloc(sizeof(crypt_state_t)))) { return SLUNKCRYPT_NULL; } if (initialize_state(state, nonce, passwd, passwd_len, mode) == SLUNKCRYPT_SUCCESS) { return ((slunkcrypt_t)state); } else { slunkcrypt_bzero(state, sizeof(crypt_state_t)); return SLUNKCRYPT_NULL; } } int slunkcrypt_reset(const slunkcrypt_t context, const uint64_t nonce, const uint8_t *const passwd, const size_t passwd_len, const int mode) { crypt_state_t *const state = (crypt_state_t*)context; int result = SLUNKCRYPT_FAILURE; if ((!state) || (!passwd) || (passwd_len < SLUNKCRYPT_PWDLEN_MIN) || (passwd_len > SLUNKCRYPT_PWDLEN_MAX) || (mode < SLUNKCRYPT_ENCRYPT) || (mode > SLUNKCRYPT_DECRYPT)) { return SLUNKCRYPT_FAILURE; } if ((result = initialize_state(state, nonce, passwd, passwd_len, mode)) != SLUNKCRYPT_SUCCESS) { slunkcrypt_bzero(state, sizeof(crypt_state_t)); } return result; } int slunkcrypt_process(const slunkcrypt_t context, const uint8_t *const input, uint8_t *const output, size_t length) { crypt_state_t *const state = (crypt_state_t*)context; if (!state) { return SLUNKCRYPT_FAILURE; } if (length > 0U) { size_t i; for (i = 0; i < length; ++i) { output[i] = process_next_symbol(state, input[i]); CHECK_ABORTED(); } } return SLUNKCRYPT_SUCCESS; aborted: slunkcrypt_bzero(state, sizeof(crypt_state_t)); return SLUNKCRYPT_ABORTED; } int slunkcrypt_inplace(const slunkcrypt_t context, uint8_t *const buffer, size_t length) { crypt_state_t *const state = (crypt_state_t*)context; if (!state) { return SLUNKCRYPT_FAILURE; } if (length > 0U) { size_t i; for (i = 0; i < length; ++i) { buffer[i] = process_next_symbol(state, buffer[i]); CHECK_ABORTED(); } } return SLUNKCRYPT_SUCCESS; aborted: slunkcrypt_bzero(state, sizeof(crypt_state_t)); return SLUNKCRYPT_ABORTED; } void slunkcrypt_free(const slunkcrypt_t context) { crypt_state_t *const state = (crypt_state_t*)context; if (state) { slunkcrypt_bzero(state, sizeof(crypt_state_t)); free(state); } }