Using the 128-bit hash function, instead of 64-Bit one.

This commit is contained in:
LoRd_MuldeR 2021-04-07 22:14:50 +02:00
parent 0e75e05fda
commit fde0906f98
Signed by: mulder
GPG Key ID: 2B5913365F57E03F

View File

@ -12,6 +12,12 @@
#include <limits.h>
#include <assert.h>
/* Intrinsic */
#if defined(_MSC_VER) && defined(_M_X64)
# include <intrin.h>
# pragma intrinsic(_umul128)
#endif
/* Compiler compatibility */
#if defined(_MSC_VER)
# define FORCE_INLINE __forceinline
@ -30,10 +36,6 @@ const uint16_t SLUNKCRYPT_VERSION_MINOR = MY_VERSION_MINOR;
const uint16_t SLUNKCRYPT_VERSION_PATCH = MY_VERSION_PATCH;
const char *const SLUNKCRYPT_BUILD = __DATE__ " " __TIME__;
/* Const */
#define HASH_MAGIC_PRIME 0x00000100000001B3ull
#define HASH_OFFSET_BASE 0xCBF29CE484222325ull
/* Utilities */
#define BOOLIFY(X) (!!(X))
@ -43,9 +45,9 @@ const char *const SLUNKCRYPT_BUILD = __DATE__ " " __TIME__;
typedef struct
{
uint64_t a, b, c;
uint64_t hi, lo;
}
key_data_t;
uint128_t;
typedef struct
{
@ -88,13 +90,7 @@ static FORCE_INLINE uint32_t lower_u64(const uint64_t value)
static FORCE_INLINE uint32_t upper_u64(const uint64_t value)
{
return (uint32_t)((value >> 32U) & 0xFFFFFFFF);
}
static FORCE_INLINE uint8_t byte_u16(const uint16_t value, const size_t off)
{
assert(off < sizeof(uint16_t));
return (uint8_t)((value >> (CHAR_BIT * off)) & 0xFF);
return (uint32_t)(value >> 32U);
}
static FORCE_INLINE uint8_t byte_u64(const uint64_t value, const size_t off)
@ -103,89 +99,104 @@ static FORCE_INLINE uint8_t byte_u64(const uint64_t value, const size_t off)
return (uint8_t)((value >> (CHAR_BIT * off)) & 0xFF);
}
// ==========================================================================
// 128-Bit math support
// ==========================================================================
static FORCE_INLINE void mult_u128(uint128_t *const out, const uint128_t lhs, const uint128_t rhs)
{
#if defined(__GNUC__) && defined(__SIZEOF_INT128__)
const __uint128_t lhs_128 = ((__uint128_t)lhs.hi << 64U) | lhs.lo;
const __uint128_t rhs_128 = ((__uint128_t)rhs.hi << 64U) | rhs.lo;
const __uint128_t out_128 = lhs_128 * rhs_128;
out->hi = (uint64_t)(out_128 >> 64U);
out->lo = (uint64_t)(out_128 & 0xFFFFFFFFFFFFFFFF);
#else
#if defined(_MSC_VER) && defined(_M_X64)
out->lo = _umul128(lhs.lo, rhs.lo, &out->hi);
#else
const uint64_t lolo = (lhs.lo & 0xFFFFFFFF) * (rhs.lo & 0xFFFFFFFF);
const uint64_t hilo = (lhs.lo >> 32U) * (rhs.lo & 0xFFFFFFFF);
const uint64_t lohi = (lhs.lo & 0xFFFFFFFF) * (rhs.lo >> 32U);
const uint64_t hihi = (lhs.lo >> 32U) * (rhs.lo >> 32U);
const uint64_t crss = (lolo >> 32U) + (hilo & 0xFFFFFFFF) + lohi;
out->hi = (hilo >> 32U) + (crss >> 32) + hihi;
out->lo = (crss << 32U) | (lolo & 0xFFFFFFFF);
#endif
out->hi += (lhs.hi * rhs.lo) + (lhs.lo * rhs.hi); /* 128x128=128 */
#endif
}
// ==========================================================================
// Hash function
// ==========================================================================
static FORCE_INLINE void hash_update_str(uint64_t* const hash, const uint8_t *const data, const size_t data_len)
static const uint128_t HASH_OFFSET_BASE = { 0x6C62272E07BB0142, 0x62B821756295C58D };
static const uint128_t HASH_MAGIC_PRIME = { 0x0000000001000000, 0x000000000000013B };
static FORCE_INLINE void hash_update_str(uint128_t *const hash, const uint8_t *const data, const size_t data_len)
{
size_t i;
for (i = 0U; i < data_len; ++i)
{
*hash = ((*hash) ^ data[i]) * HASH_MAGIC_PRIME;
hash->lo ^= data[i];
mult_u128(hash, *hash, HASH_MAGIC_PRIME);
}
}
static FORCE_INLINE void hash_update_u64(uint64_t *const hash, const uint64_t value)
static FORCE_INLINE void hash_update_u64(uint128_t *const hash, const uint64_t value)
{
size_t i;
for (i = 0U; i < sizeof(uint64_t); ++i)
{
*hash = ((*hash) ^ byte_u64(value, i)) * HASH_MAGIC_PRIME;
hash->lo ^= byte_u64(value, i);
mult_u128(hash, *hash, HASH_MAGIC_PRIME);
}
}
static FORCE_INLINE void hash_update_u16(uint64_t *const hash, const uint16_t value)
static uint64_t hash_code(const uint64_t salt, const uint8_t *const data, const size_t data_len)
{
size_t i;
for (i = 0U; i < sizeof(uint16_t); ++i)
{
*hash = ((*hash) ^ byte_u16(value, i)) * HASH_MAGIC_PRIME;
}
}
static uint64_t hash_code_init(const uint64_t salt, const uint16_t i, const uint8_t *const data, const size_t data_len)
{
uint64_t hash = HASH_OFFSET_BASE;
hash_update_u64(&hash, salt);
hash_update_u16(&hash, i);
hash_update_str(&hash, data, data_len);
return hash;
}
static uint64_t hash_code_next(const uint64_t salt, const uint8_t *const data, const size_t data_len)
{
uint64_t hash = HASH_OFFSET_BASE;
uint128_t hash = HASH_OFFSET_BASE;
hash_update_u64(&hash, salt);
hash_update_str(&hash, data, data_len);
return hash;
return hash.hi ^ hash.lo;
}
// ==========================================================================
// Key derivation
// ==========================================================================
static FORCE_INLINE uint64_t keygen_loop(uint64_t salt, const uint16_t i, const uint8_t *const passwd, const size_t passwd_len)
static FORCE_INLINE uint64_t keygen_loop(uint64_t salt, const uint8_t *const passwd, const size_t passwd_len)
{
uint64_t result = 0U;
size_t u;
uint64_t result = salt = hash_code_init(salt, i, passwd, passwd_len);
for (u = 1U; u < 99971U; ++u)
for (u = 0U; u < 99971U; ++u)
{
result ^= salt = hash_code_next(salt, passwd, passwd_len);
result ^= salt = hash_code(salt, passwd, passwd_len);
}
return result;
}
static void generate_key(key_data_t *const key, const uint64_t salt, const uint16_t pepper, const uint8_t *const passwd, const size_t passwd_len)
static void generate_key(uint64_t *const key, const uint64_t salt, const uint16_t pepper, const uint8_t *const passwd, const size_t passwd_len)
{
key->a = keygen_loop(salt, (pepper & 0x3FFF) | 0x0000, passwd, passwd_len);
key->b = keygen_loop(salt, (pepper & 0x3FFF) | 0x4000, passwd, passwd_len);
key->c = keygen_loop(salt, (pepper & 0x3FFF) | 0x8000, passwd, passwd_len);
key[0U] = keygen_loop(0x243F6A8885A308D3 + salt + pepper, passwd, passwd_len);
key[1U] = keygen_loop(0x13198A2E03707344 + salt + pepper, passwd, passwd_len);
key[2U] = keygen_loop(0xA4093822299F31D0 + salt + pepper, passwd, passwd_len);
}
// ==========================================================================
// Deterministic random bit generator
// ==========================================================================
static void random_init(rand_state_t *const state, const key_data_t *const key)
static void random_init(rand_state_t *const state, const uint64_t *const key)
{
slunkcrypt_bzero(state, sizeof(rand_state_t));
state->x = lower_u64(key->a);
state->y = upper_u64(key->a);
state->z = lower_u64(key->b);
state->w = upper_u64(key->b);
state->v = lower_u64(key->c);
state->d = upper_u64(key->c);
state->x = lower_u64(key[0U]);
state->y = upper_u64(key[0U]);
state->z = lower_u64(key[1U]);
state->w = upper_u64(key[1U]);
state->v = lower_u64(key[2U]);
state->d = upper_u64(key[2U]);
}
static uint32_t random_next(rand_state_t *const state)
@ -202,12 +213,12 @@ static uint32_t random_next(rand_state_t *const state)
static void random_seed(rand_state_t *const state, uint64_t salt, const uint16_t pepper, const uint8_t *const passwd, const size_t passwd_len)
{
size_t i;
key_data_t key;
uint64_t key[3U];
do
{
generate_key(&key, salt++, pepper, passwd, passwd_len);
random_init(state, &key);
slunkcrypt_bzero(&key, sizeof(key_data_t));
generate_key(key, salt++, pepper, passwd, passwd_len);
random_init(state, key);
slunkcrypt_bzero(&key, 3U * sizeof(uint64_t));
}
while (!(state->x || state->y || state->z || state->w || state->v));
for (i = 0U; i < 97U; ++i)